Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II.

نویسندگان

  • G Mavankal
  • S H Ignatius Ou
  • H Oliver
  • D Sigman
  • R B Gaynor
چکیده

The Tat-responsive region (TAR) element is a critical RNA regulatory element in the human immunodeficiency virus (HIV) long terminal repeat, which is required for activation of gene expression by the transactivator protein Tat. Recently, we demonstrated by gel-retardation analysis that RNA polymerase II binds to TAR RNA and that Tat prevents this binding even when Tat does not bind to TAR RNA. These results suggested that direct interactions between Tat and RNA polymerase II may prevent RNA polymerase II pausing and lead to Tat-mediated increases in transcriptional elongation. To test this possibility, we performed protein interaction studies with RNA polymerase II and both the HIV-1 and the closely related HIV-2 Tat protein. These studies indicated that both the HIV-1 and HIV-2 Tat proteins could specifically interact with RNA polymerase II. Mutagenesis of both HIV-1 and HIV-2 Tat demonstrated that the basic domains of both the HIV-1 and HIV-2 Tat proteins were required for this interaction. Furthermore, "far Western" analysis suggested that the largest subunit of RNA polymerase II was the site for interaction with Tat. The interactions between Tat and RNA polymerase II were of similar magnitude to those detected between RNA polymerase II and the cellular transcription factor RAP30, which stably associates with RNA polymerase II during transcriptional elongation. These studies are consistent with the model that RNA polymerase II is a cellular target for Tat resulting in Tat-mediated increases in transcriptional elongation from the HIV long terminal repeat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function.

Human immunodeficiency virus types 1 and 2 encode closely related proteins, Tat-1 and Tat-2, that stimulate viral transcription. Previously, we showed that the activation domains of these proteins specifically interact in vitro with a cellular protein kinase named TAK. In vitro, TAK phosphorylates the Tat-2 but not the Tat-1 protein, a 42-kDa polypeptide of unknown identity, and the carboxyl-te...

متن کامل

Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor.

Efficient replication of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) requires the virus transactivator proteins known as Tat. In order to understand the molecular mechanisms involved in Tat transactivation, it is essential to identify the cellular target(s) of the Tat activation domain. Using an in vitro kinase assay, we previously identified a cellular protein kinase activity,...

متن کامل

Tat-SF1 protein associates with RAP30 and human SPT5 proteins.

The potent transactivator Tat recognizes the transactivation response RNA element (TAR) of human immunodeficiency virus type 1 and stimulates the processivity of elongation of RNA polymerase (Pol) II complexes. The cellular proteins Tat-SF1 and human SPT5 (hSPT5) are required for Tat activation as shown by immunodepletion with specific sera and complementation with recombinant proteins. In nucl...

متن کامل

CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription.

Maximal human immunodeficiency virus type 1 (HIV-1) gene expression requires specific cellular factors in addition to the virus-encoded trans-activator protein Tat and the RNA element TAR. We developed a functional assay, based on transcriptional activation in vitro, to identify these cellular factors. Here, we describe the purification and molecular cloning of CA150, a nuclear protein that is ...

متن کامل

Viral transactivators specifically target distinct cellular protein kinases that phosphorylate the RNA polymerase II C-terminal domain.

Phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II has been implicated as an important step in transcriptional regulation. Previously, we reported that a cellular CTD kinase, TAK, is targeted by the human immunodeficiency virus transactivator Tat. In the present study, we analyzed several other transactivators for the ability to interact with CTD k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 5  شماره 

صفحات  -

تاریخ انتشار 1996